Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Front Immunol ; 13: 958581, 2022.
Artigo em Inglês | MEDLINE | ID: covidwho-2022744

RESUMO

In addition to vaccines, there is an urgent need for supplemental antiviral therapeutics to dampen the persistent COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The transmembrane protease serine 2 (TMPRSS2), that is responsible for proteolytic priming of the SARS-CoV-2 spike protein, appears as a rational therapeutic target. Accordingly, selective inhibitors of TMPRSS2 represent potential tools for prevention and treatment of COVID-19. Previously, we identified the human milk glycoprotein lactoferrin as a natural inhibitor of plasminogen conversion to plasmin, a serine protease homologous to TMPRSS2. Here, we tested whether lactoferrin and lactoferricin, a biologically active natural peptide produced by pepsin-mediated digestion of lactoferrin, together with synthetic peptides derived from lactoferrin, were able to block TMPRSS2 and SARS-CoV-2 infection. Particularly, we revealed that both lactoferricin and the N-terminal synthetic peptide pLF1 significantly inhibited: i) proteolytic activity of TMPRSS2 and plasmin, ii) proteolytic processing of the SARS-CoV-2 spike protein, and iii) SARS-CoV-2 infection of SARS-CoV-2-permissive cells. Thus, natural and synthetic peptides derived from lactoferrin represent feasible candidates for supporting prevention and treatment of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Lactoferrina , SARS-CoV-2 , Serina Endopeptidases , Inibidores de Serina Proteinase , Fibrinolisina , Humanos , Lactoferrina/farmacologia , Pandemias , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Glicoproteína da Espícula de Coronavírus
2.
J Med Chem ; 65(4): 2971-2987, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: covidwho-1616927

RESUMO

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the most common complications in COVID-19. Elastase has been recognized as an important target to prevent ALI/ARDS in the patient of COVID-19. Cyclotheonellazole A (CTL-A) is a natural macrocyclic peptide reported to be a potent elastase inhibitor. Herein, we completed the first total synthesis of CTL-A in 24 linear steps. The key reactions include three-component MAC reactions and two late-stage oxidations. We also provided seven CTL-A analogues and elucidated preliminary structure-activity relationships. The in vivo ALI mouse model further suggested that CTL-A alleviated acute lung injury with reductions in lung edema and pathological deterioration, which is better than sivelestat, one approved elastase inhibitor. The activity of CTL-A against elastase, along with its cellular safety and well-established synthetic route, warrants further investigation of CTL-A as a candidate against COVID-19 pathogeneses.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Elastase de Leucócito/antagonistas & inibidores , Peptídeos Cíclicos/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Inibidores de Serina Proteinase/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Animais , Bleomicina , COVID-19/metabolismo , COVID-19/patologia , Linhagem Celular , Modelos Animais de Doenças , Humanos , Elastase de Leucócito/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Síndrome do Desconforto Respiratório/induzido quimicamente , Síndrome do Desconforto Respiratório/metabolismo , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/química , Tratamento Farmacológico da COVID-19
3.
J Virol ; 95(19): e0086121, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1486519

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the viral pathogen causing the coronavirus disease 2019 (COVID-19) global pandemic. No effective treatment for COVID-19 has been established yet. The serine protease transmembrane protease serine 2 (TMPRSS2) is essential for viral spread and pathogenicity by facilitating the entry of SARS-CoV-2 into host cells. The protease inhibitor camostat, an anticoagulant used in the clinic, has potential anti-inflammatory and antiviral activities against COVID-19. However, the potential mechanisms of viral resistance and antiviral activity of camostat are unclear. Herein, we demonstrate high inhibitory potencies of camostat for a panel of serine proteases, indicating that camostat is a broad-spectrum inhibitor of serine proteases. In addition, we determined the crystal structure of camostat in complex with a serine protease (uPA [urokinase-type plasminogen activator]), which reveals that camostat is inserted in the S1 pocket of uPA but is hydrolyzed by uPA, and the cleaved camostat covalently binds to Ser195. We also generated a homology model of the structure of the TMPRSS2 serine protease domain. The model shows that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2, subsequently preventing SARS-CoV-2 spread. IMPORTANCE Serine proteases are a large family of enzymes critical for multiple physiological processes and proven diagnostic and therapeutic targets in several clinical indications. The serine protease transmembrane protease serine 2 (TMPRSS2) was recently found to mediate SARS-CoV-2 entry into the host. Camostat mesylate (FOY 305), a serine protease inhibitor active against TMPRSS2 and used for the treatment of oral squamous cell carcinoma and chronic pancreatitis, inhibits SARS-CoV-2 infection of human lung cells. However, the direct inhibition mechanism of camostat mesylate for TMPRSS2 is unclear. Herein, we demonstrate that camostat uses the same inhibitory mechanism to inhibit the activity of TMPRSS2 as uPA, subsequently preventing SARS-CoV-2 spread.


Assuntos
Antivirais/farmacologia , Ésteres/farmacologia , Guanidinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Serina Endopeptidases/química , Serina Endopeptidases/farmacologia , Serina Proteases/farmacologia , Antivirais/química , COVID-19/prevenção & controle , Carcinoma de Células Escamosas , Ésteres/química , Ésteres/metabolismo , Guanidinas/química , Guanidinas/metabolismo , Humanos , Simulação de Dinâmica Molecular , Neoplasias Bucais , Domínios Proteicos , Alinhamento de Sequência , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Proteases/química , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
4.
ACS Chem Biol ; 16(9): 1692-1700, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1366786

RESUMO

The pro-protein convertase furin is a highly specific serine protease involved in the proteolytic maturation of many proteins in the secretory pathway. It also activates surface proteins of many viruses including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furin inhibitors effectively suppress viral replication and thus are promising antiviral therapeutics with broad application potential. Polybasic substrate-like ligands typically trigger conformational changes shifting furin's active site cleft from the OFF-state to the ON-state. Here, we solved the X-ray structures of furin in complex with four different arginine mimetic compounds with reduced basicity. These guanylhydrazone-based inhibitor complexes showed for the first time an active site-directed binding mode to furin's OFF-state conformation. The compounds undergo unique interactions within the S1 pocket, largely different compared to substrate-like ligands. A second binding site was identified at the S4/S5 pocket of furin. Crystallography-based titration experiments confirmed the S1 site as the primary binding pocket. We also tested the proprotein convertases PC5/6 and PC7 for inhibition by guanylhydrazones and found an up to 7-fold lower potency for PC7. Interestingly, the observed differences in the Ki values correlated with the sequence conservation of the PCs at the allosteric sodium binding site. Therefore, OFF-state-specific targeting of furin can serve as a valuable strategy for structure-based development of PC-selective small-molecule inhibitors.


Assuntos
Antivirais/metabolismo , Furina/antagonistas & inibidores , Guanidinas/metabolismo , Hidrazonas/metabolismo , Inibidores de Serina Proteinase/metabolismo , Antivirais/química , Domínio Catalítico , Cristalografia por Raios X , Ensaios Enzimáticos , Furina/química , Furina/metabolismo , Guanidinas/química , Células HEK293 , Humanos , Hidrazonas/química , Cinética , Pró-Proteína Convertase 5/antagonistas & inibidores , Pró-Proteína Convertase 5/química , Ligação Proteica , Conformação Proteica , Inibidores de Serina Proteinase/química , Subtilisinas/antagonistas & inibidores , Subtilisinas/química
5.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: covidwho-1288905

RESUMO

Positively charged groups that mimic arginine or lysine in a natural substrate of trypsin are necessary for drugs to inhibit the trypsin-like serine protease TMPRSS2 that is involved in the viral entry and spread of coronaviruses, including SARS-CoV-2. Based on this assumption, we identified a set of 13 approved or clinically investigational drugs with positively charged guanidinobenzoyl and/or aminidinobenzoyl groups, including the experimentally verified TMPRSS2 inhibitors Camostat and Nafamostat. Molecular docking using the C-I-TASSER-predicted TMPRSS2 catalytic domain model suggested that the guanidinobenzoyl or aminidinobenzoyl group in all the drugs could form putative salt bridge interactions with the side-chain carboxyl group of Asp435 located in the S1 pocket of TMPRSS2. Molecular dynamics simulations further revealed the high stability of the putative salt bridge interactions over long-time (100 ns) simulations. The molecular mechanics/generalized Born surface area-binding free energy assessment and per-residue energy decomposition analysis also supported the strong binding interactions between TMPRSS2 and the proposed drugs. These results suggest that the proposed compounds, in addition to Camostat and Nafamostat, could be effective TMPRSS2 inhibitors for COVID-19 treatment by occupying the S1 pocket with the hallmark positively charged groups.


Assuntos
Antivirais/química , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/química , Antivirais/metabolismo , Antivirais/uso terapêutico , Benzamidinas/química , Benzamidinas/metabolismo , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Ésteres/química , Ésteres/metabolismo , Guanidinas/química , Guanidinas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Serina Endopeptidases/química , Inibidores de Serina Proteinase/metabolismo , Inibidores de Serina Proteinase/uso terapêutico , Termodinâmica , Tratamento Farmacológico da COVID-19
6.
J Clin Invest ; 131(10)2021 05 17.
Artigo em Inglês | MEDLINE | ID: covidwho-1285140

RESUMO

Drugs targeting host proteins can act prophylactically to reduce viral burden early in disease and limit morbidity, even with antivirals and vaccination. Transmembrane serine protease 2 (TMPRSS2) is a human protease required for SARS coronavirus 2 (SARS-CoV-2) viral entry and may represent such a target. We hypothesized that drugs selected from proteins related by their tertiary structure, rather than their primary structure, were likely to interact with TMPRSS2. We created a structure-based phylogenetic computational tool named 3DPhyloFold to systematically identify structurally similar serine proteases with known therapeutic inhibitors and demonstrated effective inhibition of SARS-CoV-2 infection in vitro and in vivo. Several candidate compounds, avoralstat, PCI-27483, antipain, and soybean trypsin inhibitor, inhibited TMPRSS2 in biochemical and cell infection assays. Avoralstat, a clinically tested kallikrein-related B1 inhibitor, inhibited SARS-CoV-2 entry and replication in human airway epithelial cells. In an in vivo proof of principle, avoralstat significantly reduced lung tissue titers and mitigated weight loss when administered prophylactically to mice susceptible to SARS-CoV-2, indicating its potential to be repositioned for coronavirus disease 2019 (COVID-19) prophylaxis in humans.


Assuntos
COVID-19 , Filogenia , SARS-CoV-2/fisiologia , Serina Endopeptidases , Inibidores de Serina Proteinase , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , COVID-19/enzimologia , COVID-19/genética , COVID-19/prevenção & controle , Chlorocebus aethiops , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Serina Endopeptidases/química , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia , Relação Estrutura-Atividade , Células Vero
7.
Molecules ; 26(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: covidwho-1110462

RESUMO

Currently, SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) has infected people among all countries and is a pandemic as declared by the World Health Organization (WHO). SARS-CoVID-2 main protease is one of the therapeutic drug targets that has been shown to reduce virus replication, and its high-resolution 3D structures in complex with inhibitors have been solved. Previously, we had demonstrated the potential of natural compounds such as serine protease inhibitors eventually leading us to hypothesize that FDA-approved marine drugs have the potential to inhibit the biological activity of SARS-CoV-2 main protease. Initially, field-template and structure-activity atlas models were constructed to understand and explain the molecular features responsible for SARS-CoVID-2 main protease inhibitors, which revealed that Eribulin Mesylate, Plitidepsin, and Trabectedin possess similar characteristics related to SARS-CoVID-2 main protease inhibitors. Later, protein-ligand interactions are studied using ensemble molecular-docking simulations that revealed that marine drugs bind at the active site of the main protease. The three-dimensional reference interaction site model (3D-RISM) studies show that marine drugs displace water molecules at the active site, and interactions observed are favorable. These computational studies eventually paved an interest in further in vitro studies. Finally, these findings are new and indeed provide insights into the role of FDA-approved marine drugs, which are already in clinical use for cancer treatment as a potential alternative to prevent and treat infected people with SARS-CoV-2.


Assuntos
Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/fisiologia , Inibidores de Serina Proteinase/farmacologia , Domínio Catalítico , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Reposicionamento de Medicamentos , Furanos/química , Furanos/farmacologia , Humanos , Cetonas/química , Cetonas/farmacologia , Modelos Moleculares , Simulação de Acoplamento Molecular , Peptídeos Cíclicos , Relação Quantitativa Estrutura-Atividade , SARS-CoV-2/efeitos dos fármacos , Inibidores de Serina Proteinase/química , Trabectedina/química , Trabectedina/farmacologia , Proteínas Virais/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
8.
Chem Biol Interact ; 338: 109428, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1103757

RESUMO

Camostat mesylate, a potent inhibitor of the human transmembrane protease, serine 2 (TMPRSS2), is currently under investigation for its effectiveness in COVID-19 patients. For its safe application, the risks of camostat mesylate to induce pharmacokinetic drug-drug interactions with co-administered drugs should be known. We therefore tested in vitro the potential inhibition of important efflux (P-glycoprotein (P-gp, ABCB1), breast cancer resistance protein (BCRP, ABCG2)), and uptake transporters (organic anion transporting polypeptides OATP1B1, OATP1B3, OATP2B1) by camostat mesylate and its active metabolite 4-(4-guanidinobenzoyloxy)phenylacetic acid (GBPA). Transporter inhibition was evaluated using fluorescent probe substrates in transporter over-expressing cell lines and compared to the respective parental cell lines. Moreover, possible mRNA induction of pharmacokinetically relevant genes regulated by the nuclear pregnane X receptor (PXR) and aryl hydrocarbon receptor (AhR) was analysed in LS180 cells by quantitative real-time PCR. The results of our study for the first time demonstrated that camostat mesylate and GBPA do not relevantly inhibit P-gp, BCRP, OATP1B1 or OATP1B3. Only OATP2B1 was profoundly inhibited by GBPA with an IC50 of 11 µM. Induction experiments in LS180 cells excluded induction of PXR-regulated genes such as cytochrome P450 3A4 (CYP3A4) and ABCB1 and AhR-regulated genes such as CYP1A1 and CYP1A2 by camostat mesylate and GBPA. Together with the summary of product characteristics of camostat mesylate indicating no inhibition of CYP1A2, 2C9, 2C19, 2D6, and 3A4 in vitro, our data suggest a low potential of camostat mesylate to act as a perpetrator in pharmacokinetic drug-drug interactions. Only inhibition of OATP2B1 by GBPA warrants further investigation.


Assuntos
Interações Medicamentosas , Ésteres/metabolismo , Guanidinas/metabolismo , Inibidores de Serina Proteinase/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Ésteres/química , Ésteres/farmacologia , Guanidinas/química , Guanidinas/farmacologia , Humanos , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/metabolismo , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , RNA Mensageiro/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Serina Endopeptidases/química , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
9.
Adv Drug Deliv Rev ; 167: 47-65, 2020 12.
Artigo em Inglês | MEDLINE | ID: covidwho-921794

RESUMO

To date, no effective vaccines or therapies are available against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pandemic agent of the coronavirus disease 2019 (COVID-19). Due to their safety, efficacy and specificity, peptide inhibitors hold great promise for the treatment of newly emerging viral pathogens. Based on the known structures of viral proteins and their cellular targets, antiviral peptides can be rationally designed and optimized. The resulting peptides may be highly specific for their respective targets and particular viral pathogens or exert broad antiviral activity. Here, we summarize the current status of peptides inhibiting SARS-CoV-2 entry and outline the strategies used to design peptides targeting the ACE2 receptor or the viral spike protein and its activating proteases furin, transmembrane serine protease 2 (TMPRSS2), or cathepsin L. In addition, we present approaches used against related viruses such as SARS-CoV-1 that might be implemented for inhibition of SARS-CoV-2 infection.


Assuntos
Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/metabolismo , Fragmentos de Peptídeos/administração & dosagem , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Sequência de Aminoácidos , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/química , Antivirais/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Serina Endopeptidases/metabolismo , Inibidores de Serina Proteinase/administração & dosagem , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo
10.
An Acad Bras Cienc ; 92(2): e20200466, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-608501

RESUMO

COVID-19 emerged in December 2019 in China, and since then, has disrupted global public health and changed economic paradigms. In dealing with the new Coronavirus, SARS-CoV-2, the world has not faced such extreme global fragility since the "Spanish flu" pandemic in 1918. Researchers globally are dedicating efforts to the search for an effective treatment for COVID-19. Drugs already used in a clinical setting for other pathologies have been tested as a new therapeutic approach against SARS-CoV-2, setting off a frenzy over the preliminary data of different studies. This work aims to compile and discuss the data published thus far. Despite the potential effects of some antivirals and antiparasitic against COVID-19, clinical studies must confirm real effectiveness. However, non-pharmacological approaches have proven to be the most efficient strategy to date.


Assuntos
Antibacterianos/administração & dosagem , Antiparasitários/administração & dosagem , Antivirais/administração & dosagem , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Macrolídeos/administração & dosagem , Pneumonia Viral/tratamento farmacológico , Inibidores de Serina Proteinase/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antiparasitários/química , Antiparasitários/farmacologia , Antivirais/química , Antivirais/farmacologia , COVID-19 , Humanos , Macrolídeos/química , Macrolídeos/farmacologia , Pandemias , SARS-CoV-2 , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/farmacologia
11.
FEBS Open Bio ; 10(6): 995-1004, 2020 06.
Artigo em Inglês | MEDLINE | ID: covidwho-186395

RESUMO

A novel coronavirus [severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), or 2019 novel coronavirus] has been identified as the pathogen of coronavirus disease 2019. The main protease (Mpro , also called 3-chymotrypsin-like protease) of SARS-CoV-2 is a potential target for treatment of COVID-19. A Mpro homodimer structure suitable for docking simulations was prepared using a crystal structure (PDB ID: 6Y2G; resolution 2.20 Å). Structural refinement was performed in the presence of peptidomimetic α-ketoamide inhibitors, which were previously disconnected from each Cys145 of the Mpro homodimer, and energy calculations were performed. Structure-based virtual screenings were performed using the ChEMBL database. Through a total of 1 485 144 screenings, 64 potential drugs (11 approved, 14 clinical, and 39 preclinical drugs) were predicted to show high binding affinity with Mpro . Additional docking simulations for predicted compounds with high binding affinity with Mpro suggested that 28 bioactive compounds may have potential as effective anti-SARS-CoV-2 drug candidates. The procedure used in this study is a possible strategy for discovering anti-SARS-CoV-2 drugs from drug libraries that may significantly shorten the clinical development period with regard to drug repositioning.


Assuntos
Betacoronavirus/enzimologia , Quimases/metabolismo , Infecções por Coronavirus/metabolismo , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Preparações Farmacêuticas/metabolismo , Pneumonia Viral/metabolismo , Inibidores de Serina Proteinase/metabolismo , Proteínas Virais/metabolismo , Betacoronavirus/efeitos dos fármacos , COVID-19 , Domínio Catalítico , Quimases/antagonistas & inibidores , Quimases/química , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cristalização , Bases de Dados de Compostos Químicos , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Pandemias , Preparações Farmacêuticas/química , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , SARS-CoV-2 , Inibidores de Serina Proteinase/química , Proteínas Virais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA